Flu Detector: Estimating influenza-like illness rates from online user-generated content
نویسنده
چکیده
We provide a brief technical description of an online platform for disease monitoring, titled as the Flu Detector (fludetector.cs.ucl.ac.uk). Flu Detector, in its current version (v.0.5), uses either Twitter or Google search data in conjunction with statistical Natural Language Processing models to estimate the rate of influenza-like illness in the population of England. Its back-end is a live service that collects online data, utilises modern technologies for large-scale text processing, and finally applies statistical inference models that are trained offline. The front-end visualises the various disease rate estimates. Notably, the models based on Google data achieve a high level of accuracy with respect to the most recent four flu seasons in England (2012/13 to 2015/16). This highlighted Flu Detector as having a great potential of becoming a complementary source to the domestic traditional flu surveillance schemes.
منابع مشابه
Advances in nowcasting influenza-like illness rates using search query logs
User-generated content can assist epidemiological surveillance in the early detection and prevalence estimation of infectious diseases, such as influenza. Google Flu Trends embodies the first public platform for transforming search queries to indications about the current state of flu in various places all over the world. However, the original model significantly mispredicted influenza-like ill...
متن کاملEnhancing Feature Selection Using Word Embeddings: The Case of Flu Surveillance
Health surveillance systems based on online user-generated content often rely on the identification of textual markers that are related to a target disease. Given the high volume of available data, these systems benefit from an automatic feature selection process. This is accomplished either by applying statistical learning techniques, which do not consider the semantic relationship between the...
متن کاملOnline Social Networks Flu Trend Tracker - A Novel Sensory Approach to Predict Flu Trends
Seasonal influenza epidemics cause several million cases of illnesses cases and about 250,000 to 500,000 deaths worldwide each year. Other pandemics like the 1918 “Spanish Flu” may change into devastating event. Reducing the impact of these threats is of paramount importance for health authorities, and studies have shown that effective interventions can be taken to contain the epidemics, if ear...
متن کاملEnhancing Feature Selection Using Word Embeddings
Health surveillance systems based on online user-generated content often rely on the identification of textual markers that are related to a target disease. Given the high volume of available data, these systems benefit from an automatic feature selection process. This is accomplished either by applying statistical learning techniques, which do not consider the semantic relationship between the...
متن کاملUtilizing syndromic surveillance data for estimating levels of influenza circulation.
The availability of weekly Web-based participatory surveillance data on self-reported influenza-like illness (ILI), defined here as self-reported fever and cough/sore throat, over several influenza seasons allows for estimation of the incidence of influenza infection in population cohorts. We demonstrate this using syndromic data reported through the Influenzanet surveillance platform in the Ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1612.03494 شماره
صفحات -
تاریخ انتشار 2016